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Abstract

ChatGPT is attracting a cross-field interest as it provides
a language interface with remarkable conversational com-
petency and reasoning capabilities across many domains.
However, since ChatGPT is trained with languages, it is
currently not capable of processing or generating images
from the visual world. At the same time, Visual Foundation
Models, such as Visual Transformers or Stable Diffusion,
although showing great visual understanding and genera-
tion capabilities, they are only experts on specific tasks with
one-round fixed inputs and outputs. To this end, We build
a system called Visual ChatGPT, incorporating different
Visual Foundation Models, to enable the user to interact
with ChatGPT by 1) sending and receiving not only lan-
guages but also images 2) providing complex visual ques-
tions or visual editing instructions that require the collabo-
ration of multiple AI models with multi-steps. 3) providing
feedback and asking for corrected results. We design a se-
ries of prompts to inject the visual model information into
ChatGPT, considering models of multiple inputs/outputs
and models that require visual feedback. Experiments show
that Visual ChatGPT opens the door to investigating the
visual roles of ChatGPT with the help of Visual Founda-
tion Models. Our system is publicly available at https:
//github.com/microsoft/visual-chatgpt.

1. Introduction

In recent years, the development of Large language mod-
els (LLMs) has shown incredible progress, such as T5 [32],
BLOOM [36], and GPT-3 [5]. One of the most significant
breakthroughs is ChatGPT, which is built upon Instruct-
GPT [29], specifically trained to interact with users in a gen-
uinely conversational manner, thus allowing it to maintain
the context of the current conversation, handle follow-up
questions, and correct answer produced by itself.

Although powerful, ChatGPT is limited in its ability
to process visual information since it is trained with a
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Figure 1. Architecture of Visual ChatGPT.
single language modality, while Visual Foundation Mod-
els (VFMs) have shown tremendous potential in computer
vision, with their ability to understand and generate com-
plex images. For instance, BLIP Model [22] is an expert
in understanding and providing the description of an image.
Stable Diffusion [35] is an expert in synthesizing an image
based on text prompts. However, suffering from the task
specification nature, the demanding and fixed input-output
formats make the VFMs less flexible than conversational
language models in human-machine interaction.

Could we build a ChatGPT-like system that also supports
image understanding and generation? One intuitive idea
is to train a multi-modal conversational model. However,
building such a system would consume a large amount of
data and computational resources. Besides, another chal-
lenge comes that what if we want to incorporate modalities
beyond languages and images, like videos or voices? Would
it be necessary to train a totally new multi-modality model
every time when it comes to new modalities or functions?

We answer the above questions by proposing a system
named Visual ChatGPT. Instead of training a new multi-
modal ChatGPT from scratch, we build Visual ChatGPT
directly based on ChatGPT and incorporate a variety of
VFMs. To bridge the gap between ChatGPT and these
VFMs, we propose a Prompt Manager which supports the
following functions: 1) explicitly tells ChatGPT the capa-
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bility of each VFM and specifies the input-output formats;
2) converts different visual information, for instance, png
images, the depth images and mask matrix, to language for-
mat to help ChatGPT understand; 3) handles the histories,
priorities, and conflicts of different Visual Foundation Mod-
els. With the help of the Prompt Manager, ChatGPT can
leverage these VFMs and receives their feedback in an it-
erative manner until it meets the requirements of users or
reaches the ending condition.

As shown in Fig. 1, a user uploads an image of a yellow
flower and enters a complex language instruction “please
generate a red flower conditioned on the predicted depth of
this image and then make it like a cartoon, step by step”.
With the help of Prompt Manager, Visual ChatGPT starts a
chain of execution of related Visual Foundation Models. In
this case, it first applies the depth estimation model to de-
tect the depth information, then utilizes the depth-to-image
model to generate a figure of a red flower with the depth
information, and finally leverages the style transfer VFM
based on the Stable Diffusion model to change the style
of this image into a cartoon. During the above pipeline,
Prompt Manager serves as a dispatcher for ChatGPT by pro-
viding the type of visual formats and recording the process
of information transformation. Finally, when Visual Chat-
GPT obtains the hints of “cartoon” from Prompt Manager,
it will end the execution pipeline and show the final result.

In summary, our contributions are as follows:

• We propose Visual ChatGPT, which opens the door
of combining ChatGPT and Visual Foundation Models
and enables ChatGPT to handle complex visual tasks;

• We design a Prompt Manager, in which we involve
22 different VFMs and define the internal correlation
among them for better interaction and combination;

• Massive zero-shot experiments are conducted and
abundant cases are shown to verify the understanding
and generation ability of Visual ChatGPT.

2. Related Works
2.1. Natural Language and Vision

Surrounded by various modalities (sound, vision, video,
etc), language and vision are the two main mediums trans-
mitting information in our life. There is a natural link be-
tween the natural language and visions, and most questions
require joint modeling of both two streams to produce the
satisfied results [15, 26, 48], e.g., visual question answer-
ing (VQA) [2] takes an image and one corresponding ques-
tion as input and requires to generate an answer according
to the information in the given image. Owing to the success
of large language models (LLMs) like InstructGPT [29],
one can easily interact with the model or obtain feedback
in the natural language format, but it is incapable for those

LLMs to process the visual information. To fuse the vi-
sion processing ability into such LLMs, several challenges
are lying ahead since it is hard to train either large lan-
guage models or vision models, and the well-designed in-
structions [4, 55, 21] and cumbersome conversions [30, 52]
are required to connect different modalities. Although sev-
eral works have explored leveraging the pre-trained LLMs
to improve the performance on the vision-language (VL)
tasks, those methods supported several specific VL tasks
(from language to version or from version to language) and
required labeled data for training [38, 1, 22].

2.2. Pre-trained Models for VL tasks

To better extract visual features, frozen pre-trained im-
age encoders are adopted in the early works [9, 25, 54],
and recent LiT [52] apply the CLIP pre-training [30] with
frozen ViT model [51]. From another perspective, exploit-
ing the knowledge from LLMs also counts. Following the
instruction of Transformer [39], pre-trained LLMs demon-
strate a powerful text understanding and generation capa-
bility [31, 19, 37, 5], and such breakthroughs also benefit
the VL modelling [13, 14, 3, 49], where these works add
an extra adapter modules [17] in the pre-trained LLMs to
align visual features to the text space. With the increased
number of model parameters, it is hard to train those pre-
trained LLMs, thus more efforts have been paid to directly
leverage the off-the-shelf frozen pre-trained LLMs for VL
tasks [12, 38, 8, 46, 50].

2.3. Guidance of Pre-trained LLMs for VL tasks

To deal with complex tasks, e.g., commonsense reason-
ing [11], Chain-of-Thought (CoT) is proposed to elicit the
multi-step reasoning abilities of LLMs [42]. More con-
cretely, CoT asks the LLMs to generate the intermediate
answers for the final results. Existing study [57] have
divided such a technique into two categories: Few-Shot-
CoT [56] and Zero-Shot-CoT [20]. For the few-shot set-
ting, the LLMs perform CoT reasoning with several demon-
strations [58, 41], and it turns out that the LLMs can ac-
quire better abilities to solve complex problems. Fur-
ther, recent studies [20, 47] have shown that LLMs can be
self-improved by leveraging self-generated rationales under
the zero-shot setting. The above studies mainly focus on
a single modality, i.e., language. Recently, Multimodal-
CoT [57] is proposed to incorporate language and vision
modalities into a two-stage framework that separates ra-
tionale generation and answer inference. However, such a
method merely shows superiority under specific scenarios,
i.e., ScienceQA benchmark [28]. In a nutshell, our work
extends the potentiality of CoT to massive tasks, including
but not limited to text-to-image generation [27], image-to-
image translation [18], image-to-text generation [40], etc.
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Figure 2. Overview of Visual ChatGPT. The left side shows a three-round dialogue, The middle side shows the flowchart of how Visual
ChatGPT iteratively invokes Visual Foundation Models and provide answers. The right side shows the detailed process of the second QA.

3. Visual ChatGPT
Let S = {(Q1,A1), (Q2,A2), ..., (QN ,AN )} be a di-

alogue system with N question-answer pairs. To get the
response Ai from the i-th round of conversation, a series
of VFMs and intermediate outputs A(j)

i from those mod-
els are involved, where j denotes the output from the j-th
VFM (F) in i-th round. More concretely, handling with
Prompt ManagerM, the format of A(j)

i is constantly mod-
ified to meet the input format of each F . In the end, the
system outputA(j)

i if it is denoted as the final response, and
no more VFM is executed. Eq. (1) provides a formal defi-
nition of Visual ChatGPT:

A(j+1)
i = ChatGPT (M(P),M(F),M(H<i),M(Qi),

M(R(<j)
i ),M(F(A(j)

i ))) (1)

– System Principle P: System Principle provides basic
rules for Visual ChatGPT, e.g., it should be sensitive to the
image filenames, and should use VFMs to handle images
instead of generating the results based on the chat history.

– Visual Foundation Model F : One core of Visual
ChatGPT is the combination of various VFMs: F =
{f1, f2, ..., fN}, where each foundation model fi contains
a determined function with explicit inputs and outputs.

– History of Dialogue H<i: We define the dia-
logue history of i-th round of conversation as the string
concatenation of previous question answer pairs, i.e,
{(Q1,A1), (Q2,A2), · · · , (Qi−1,Ai−1)}. Besides, we
truncate the dialogue history with a maximum length
threshold to meet the input length of ChatGPT model.

– User query Qi: In visual ChatGPT, query is a general
term, since it can include both linguistic and visual queries.
For instance, Fig. 1 shows an example of a query containing
both the query text and the corresponding image.

– History of Reasoning R(<j)
i : To solve a complex

question, Visual ChatGPT may require the collaboration of
multiple VFMs. For the i-th round of conversation,R(<j)

i is
all the previous reasoning histories from j invoked VFMs.

– Intermediate Answer A(j): When handling a com-
plex query, Visual ChatGPT will try to obtain the final
answer step-by-step by invoking different VFMs logically,
thus producing multiple intermediate answers.

– Prompt ManagerM: A prompt manager is designed
to convert all the visual signals into language so that Chat-
GPT model can understand. In the following subsections,
we focus on introducing how M manages above different
parts: P,F ,Qi,F(A(j)

i ).
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3.1. Prompt Managing of System PrinciplesM(P)

Visual ChatGPT is a system that integrates different
VFMs to understand visual information and generation cor-
responding answers. To accomplish this, some system prin-
ciples need to be customized, which are then transferred
into prompts that ChatGPT can understand. These prompts
serve several purposes, including:

• Role of Visual ChatGPT Visual ChatGPT is designed
to assist with a range of text and visual-related tasks,
such as VQA, image generation, and editing.

• VFMs Accessibility Visual ChatGPT has access to a
list of VFMs to solve various VL tasks. The decision of
which foundation model to use is entirely made by the
ChatGPT model itself, thus making it easy to support
new VFMs and VL tasks.

• Filename Sensitivity Visual ChatGPT accesses image
files according to the filename, and it is crucial to use
precise filenames to avoid ambiguity since one round
of conversation may contain multiple images and their
different updated versions and the misuse of filenames
will lead to the confusion about which image is cur-
rently being discussed. Therefore, Visual ChatGPT is
designed to be strict about filename usage, ensuring
that it retrieves and manipulates the correct image files.

• Chain-of-Thought As shown in Fig. 1, to cope with
one seemingly simple command may require multi-
ple VFMs, e.g., the query of “generate a red flower
conditioned on the predicted depth of this image and
then make it like a cartoon ” requires depth estimation,
depth-to-image and the style transfer VFMs. To tackle
more challenging queries by decomposing them into
subproblems, CoT is introduced in Visual ChatGPT to
help decide, leverage and dispatch multiple VFMs.

• Reasoning Format Strictness Visual ChatGPT must
follow strict reasoning formats. Thus we parse the in-
termediate reasoning results with the elaborate regex
matching algorithms, and construct the rational input
format for ChatGPT model to help it determine the
next execution, e.g., triggering a new VFM or return-
ing the final response.

• Reliability As a language model, Visual ChatGPT
may fabricate fake image filenames or facts, which can
make the system unreliable. To handle such issues,
we design prompts that require Visual ChatGPT to be
loyal to the output of the vision foundation models
and not fabricate image content or filenames. Besides,
the collaboration of multiple VFMs can increase sys-
tem reliability, thus the prompt we construct will guide
ChatGPT to leverage VFMs preferentially instead of
generating results based on conversation history.

Table 1. Foundation models supported by Visual ChatGPT.
Remove Objects from Image [10, 35]
Replace Objects from Image [10, 35]
Change Image by the Text [35]
Image Question Answering [23]
Image-to-Text [23] Text-to-Image [35]
Image-to-Edge [45] Edge-to-Image [53]
Image-to-Line [16] Line-to-Image [53]
Image-to-Hed [44] Hed-to-Image [53]
Image-to-Seg [24] Seg-to-Image [53]
Image-to-Depth [34, 33] Depth-to-Image [53]
Image-to-NormalMap [34, 33] NormalMap-to-Image [53]
Image-to-Sketch [44] Sketch-to-Image [53]
Image-to-Pose [6] Pose-to-Image [53]

3.2. Prompt Managing of Foundation ModelsM(F)

Visual ChatGPT is equipped with multiple VFMs to han-
dle various VL tasks. Since these different VFMs may share
some similarities, e.g., the replacement of objects in the im-
age can be regarded as generating a new image, and both
Image-to-Text (I2T) task and Image Question Answering
(VQA) task can be understood as giving the response ac-
cording to the provided image, it is critical to distinguish
among them. As shown in Fig. 3, the Prompt Manager
specifically defines the following aspects to help Visual
ChatGPT accurately understand and handle the VL tasks:

• Name The name prompt provides an abstract of the
overall function for each VFM, e.g., answer question
about the image, and it not only helps Visual ChatGPT
to understand the purpose of VFM in a concise manner
but also severs as the entry to VFM.

• Usage The usage prompt describes the specific sce-
nario where the VFM should be used. For example, the
Pix2Pix model [35] is suitable for changing the style
of an image. Providing this information helps Visual
ChatGPT make informed decisions about which VFM
to use for the particular task.

• Inputs/Outputs The inputs and the outputs prompt
outlines the format of inputs and outputs required by
each VFM since the format can vary significantly and
it is crucial to provide clear guideline for Visual Chat-
GPT to execute the VFMs correctly.

• Example(Optional) The example prompt is optional,
but it can be helpful for Visual ChatGPT to better un-
derstand how to use particular VFM under the specific
input template and deal with more complex queries.

3.3. Prompt Managing of User QuerieM(Qi)

Visual ChatGPT supports a variety of user queries, in-
cluding languages or images, simple or complex ones, and



the reference of multiple images. Prompt Manager handles
user queries in the following two aspects:

• Generate Unique Filename Visual ChatGPT can han-
dle two types of image-related queries: those that in-
volve newly uploaded images and those that involve
reference to existing images. For newly uploaded im-
ages, Visual ChatGPT generates a unique filename
with a universally unique identifier (UUID) and adds
a prefix string ”image” representing the relative direc-
tory, e.g., ”image/{uuid}.png”. Although the newly
uploaded image will not be fed into ChatGPT, a fake
dialogue history is generated with a question stating
the image’s filename and an answer indicating that the
image has been received. This fake dialogue history
assists in the following dialogues. For queries that in-
volve reference to existing images, Visual ChatGPT
ignores the filename check. This approach has been
proven beneficial since ChatGPT has the ability to un-
derstand fuzzy matching of user queries if it does not
lead to ambiguity, e.g., UUID names.

• Force VFM Thinking To ensure the successful trig-
ger of VFMs for Visual ChatGPT, we append a suffix
prompt to (Qi): “Since Visual ChatGPT is a text lan-
guage model, Visual ChatGPT must use tools to ob-
serve images rather than imagination. The thoughts
and observations are only visible for Visual ChatGPT,
Visual ChatGPT should remember to repeat important
information in the final response for Human. Thought:
Do I need to use a tool?”. This prompt serves two pur-
poses: 1) it prompts Visual ChatGPT to use foundation
models instead of relying solely on its imagination; 2)
it encourages Visual ChatGPT to provide specific out-
puts generated by the foundation models, rather than
generic responses such as “here you are”.

3.4. Prompt Managing of Foundation Model Out-
putsM(F(A(j)

i ))

For the intermediate outputs from different VFMs
F(A(j)

i ), Visual ChatGPT will implicitly summarize and
feed them to the ChatGPT for subsequent interaction, i.e.,
calling other VFMs for further operations until reaching the
ending condition or giving the feedback to the users. The
inner steps can be summarized below:

• Generate Chained Filename Since the interme-
diate outputs of Visual ChatGPT will become the
inputs for the next implicit conversational round,
we should make those outputs more logical to help
the LLMs better understand the reasoning process.
Specifically, the image generated from the Visual
Foundation Models are saved under the“image/”

folder, which hints the following strings represent-
ing an image name. Then, the image is named as
“{Name} {Operation} {Prev Name} {Org Name}”,
where {Name} is the UUID name mentioned
above, with {Operation} as the operation name,
{Prev Name} as the input image unique identifier, and
{Org Name} as the original name of the image up-
loaded by users or generated by VFMs. For instance,
“image/ui3c edge-of o0ec nji9dcgf.png” is a canny
edge image named “ui3c” of input “o0ec”, and the
original name of this image is “nji9dcgf”. With such a
naming rule, it can hint ChatGPT of the intermediate
result attributes,i.e., image, and how it was generated
from a series of operations.

• Call for More VFMs One core of Visual ChatGPT is
that it can automatically call for more VFMs to finish
the user’s command. More concretely, we make the
ChatGPT keep asking itself whether it needs VFMs
to solve the current problem by extending one suffix
“Thought: ” at the end of each generation.

• Ask for More Details When the user’s command is
ambiguous, Visual ChatGPT should ask the users for
more details to help better leverage VFMs. This de-
sign is safe and critical since the LLMs are not per-
mitted to arbitrarily tamper with or speculate about the
user’s intention without basis, especially when the in-
put information is insufficient.

4. Experiments
4.1. Setup

We implement the LLM with ChatGPT [29] (Ope-
nAI “text-davinci-003” version), and guide the LLM with
LangChain [7]1. We collect foundation models from Hug-
gingFace Transformers [43]2, Maskformer [10]3 and Con-
trolNet [53]4. The fully deployment of all the 22 VFMs re-
quires 4 Nvidia V100 GPUs, but users are allowed to deploy
fewer foundation models to save GPU resources flexibly.
The maximum length of chat history is 2,000 and excessive
tokens are truncated to meet the input length of ChatGPT.

4.2. A full Case of Multiple Rounds Dialogue

Fig. 4 shows a 16-round multi-modal dialogue case of
Visual ChatGPT. In this case, the user asks for both text
and image questions, and Visual ChatGPT responses with
both text and images. The dialogue involves a discussion
of multiple images, processing with multiple fundamental
models, and handling questions that require multi-steps.

1https://github.com/hwchase17/langchain
2https://huggingface.co/docs/diffusers/index
3https://github.com/facebookresearch/MaskFormer
4https://github.com/lllyasviel/ControlNet

https://github.com/hwchase17/langchain
https://huggingface.co/docs/diffusers/index
https://github.com/facebookresearch/MaskFormer
https://github.com/lllyasviel/ControlNet


: I have generated a pencil drawing of a girl and a kitten playing 
on the beach. The image is

: I have replaced the puppy with a kitten in the 
image. The new image is

: Hello, who are you?

: Hi there! I'm Visual ChatGPT. I'm here to help you with 
a wide range of text and visual related tasks. How can I help 

you?

: I like drawing, but I'm not good at drawing, 
can you help me? like drawing an apple.

: Sure, I can help you draw an apple. Here is the image I 
generated for you:

: Draw an image:

: You're welcome! Have a great day!

: Thanks very much. You did a good job. 
Goodbye!

: I generated a new image based on your sketch. The new image 
is saved as:

: Looks good. Can you make the 
image/569b_scribble2image_dcd3af54_dcd3af54.png 

into a watercolor painting?

: I have used the Instruct Image Using Text tool to 
generate a watercolor painting based on your input. The new 

image is saved as: 

: Wow this is very beautiful. Can you tell me what color 
this background is?

: The background color of the 
image/0849_pix2pix_569b_dcd3af54.png is blue.

: The image/2ca6_remove-something_0849_dcd3af54.png 
now contains a drinking glass with a blue background.

: Correct answer. Can you remove this apple in this picture? 
and then describe the image?

: There are still some shadows on the table in the 
image/2ca6_remove-something_0849_dcd3af54.png, 

can you help me to replace the table with a black table?

: I have replaced the table with a black table. The image is 
saved as

: Good. Now help me remove the cup too.

: The image/6c04_remove-
something_7d56_dcd3af54.png now contains a 
black table with a blue background and no cup.

: Can you replace the background of 
image/6c04_remove-something_7d56_dcd3af54.png with 

an old man sitting with a lot of vicissitudes in his face?

: The new image is saved as

: This picture looks good. Can you describe 
the color of the old man's clothes?

: The old man's clothes are blue.

: Correct. I want you to detect the depth map of the 
image/5cd1_replace-something_6c04_dcd3af54 first, and 

show the depth image, then generate a new image based on 
this depth map, and finally describe the final image.

: The image/38a5_depth2image_5cd1_dcd3af54.png, which 
contains 1 chair, 1 person. The person is wearing a white shirt and has 

a beard. The depth image of the of image/5cd1_replace-
something_6c04_dcd3af54 is image/d149_depth_5cd1_dcd3af54.png.

: Ok, forget apples and old people. I want you to 
help me generate a picture of a girl and a puppy 

playing on the beach.

: I have generated a picture of a girl and 
a puppy playing on the beach. The image is

: It looks very nice. Can you replace this 
puppy with a kitten?

: Well done. Can you turn this image/d1e1_replace-
something_ab0da279_ab0da279.png into a pencil drawing?

: The image/dcd3af54.png is my sketch of an apple and a 
drinking glass, can you please help me to improve it?

image/a3453226.png

: Received.  What do you want to know / operate it? 
You can use image/dcd3af54.png to represent this 

image in our dialogue.

image/569b_scribble2image_dcd3af54
_dcd3af54.png

image/0849_pix2pix_569b_dcd3af54.png 

image/2ca6_remove-
something_0849_dcd3af54.png 

image/7d56_replace-
something_2ca6_dcd3af54.png

image/6c04_remove-
something_7d56_dcd3af54.png

image/5cd1_replace-
something_6c04_dcd3af54.png

image/d149_depth_ 
5cd1_dcd3af54.png

image/38a5_dep
th2image_5cd1 
_dcd3af54.png

image/ab0da279.png

image/d1e1_replace-
something_ab0da279_ab0da279.png

image/6c71_pix2pix_
d1e1_ab0da279.png

Figure 4. Multiple rounds of dialogue between humans and Visual ChatGPT. In the dialogues, Visual ChatGPT can understand human
intents, support the language and image inputs, and accomplish complex visual tasks such as generation, question, and editing.



: Can you generate a 
chinese water-ink 
painting of a landscape? 

: Can you generate a 
chinese water-ink 
painting of a landscape? 

: Sure, I have 
generated a Chinese 
water-ink painting of a 
landscape for you. The 
image file name is 

image/71f23773.png.

: generate a figure of a 
rose 

image/
4e29100e.png.

:

:Can you tell me 
something more about 
sunflowers 

: generate a figure of a 
rose

image/
2cb15c3d.png.

: Can you tell me 
something more about 
sunflowers

image/
555deb89.png

: Received

: generate a figure of a 
lovely cat

image/
afbd8914.png

:

: draw a figure of a big 
apple then use a pear to 

replace it, show the apple 
image and the pear image 

Output of LLM:
Action: Replace 
Something From The 
Photo
Action Input: 
image/apple.png, apple, 
pear

: draw a figure of a big 
apple then use a pear to 

replace it, show the apple 
image and the pear image  

: Here is the image of 
a big apple:

image/226bb158.png and 
here is the image of a 
pear replacing the apple:

image/dce6_replace-
something_226bb158_22
6bb158.png

image/
5180fac5.png

: Received

: generate a figure of a 
lovely cat

image/
079109ff.png.

:

: generate depth image 
from the figure I gave you

: generate depth image 
from the figure I gave you

image/
e2dd_depth
_afbd8914_
afbd8914.png

:
image/
f89c_depth
_5180fac5_
5180fac5.png

:

Output of LLM:
Yes, Visual ChatGPT
needs to use a tool to 
generate a Chinese 
water-ink painting of a 
landscape. Visual 
ChatGPT will use the 
Generate Image From 
User Input Text tool to 
generate the image. The 
input for this tool should 
be "Chinese water-ink 
painting of a landscape". 
Visual ChatGPT will 
generate an image file 
named "image/xxx.png" 
and provide the file 
name in the response.

Sunflowers are a 
type of flowering plant 
in the daisy family. …. 
Sunflowers are known 
for their bright yellow 
petals and large, dark 
center…

Sunflowers are 
annual plants native to 
the Americas. They have 
large, bright yellow 
flowers with a dark 
center. Sunflowers are 
popular …

:Can you tell me some 
details about this image

:Can you tell me some 
details about this image

This image contains 
a rose with yellow petals 
and a large, dark center.

The image contains a 
rose flower

Filename Sensitivity

Failed to refer 
image filename

by considering 
filename sensitivity

Reasoning Format Strictness

Failed to start 
reasoning

by considering reasoning 
format strictness

Reliability Chain of Thought

Failed to descript
Image 

by considering
reliability

Failed to start chain 
of thought

by considering 
chain of thought

Figure 5. Case study of prompt managing of system principles. We qualitatively analyze the four proposals: file name sensitivity, reasoning
format strictness, reliability, and chain of thoughts. The top-left shows whether emphasizing the file name sensitivity in M(P) affects the
file reference accuracy. Further parsing cannot be performed for the top-right points without reasoning format strictness. The bottom-left
shows the difference in whether to tell Visual ChatGPT to be loyal to tool observation rather than faking image content. The bottom-right
shows emphasizing the ability to use tools in a chain will help the decision.



: generate a realistic 
photo of a lovely dog

: I have 
generated a 
realistic photo 
of a lovely dog,
the image file 
name is 
image/10daf4f
8.png.

: make the above 
image like oil painting

: I have 
generated an 
image of a lovely 
dog in an oil 
painting style, 
the image file 
name is 
image/93f3_repla
ce-
something_10daf
4f8_10daf4f8.png

: generate a realistic 
photo of a lovely dog

: I have 
generated a 
realistic photo 
of a lovely 
dog, the file 
name is 
image/5e942
285.png.

: make the above 
image like oil painting

: I have 
instructed the 
image to look 
like an oil 
painting, the 
new file name 
is 
image/d963_p
ix2pix_5e9422
85_5e942285.
png.

: generate a realistic 
photo of a lovely dog

: : I have 
generated a 
lovely dog 
image for you, 
the file name 
is image/
6450a01f.png.

: draw a cat to replace 
the dog in this image

: generate a realistic 
photo of a lovely dog

: I have 
generated a 
lovely dog 
image for you, 
the file name 
is image/
5e942285.png.

: draw a cat to replace 
the dog in this image

: I have replaced the 
dog in the image with a 
cat, the new image file 
name is

image/65fc_replace-
something_4ee1a8d2_4ee

1a8d2.png.

: Received. What do 
you want to know / 
operate it?

: can you predict the 
depth image?

: Observation: is not a 
valid tool, try another 
one.
Depth Detection On 
Image is not a valid tool, 
try another one.
Generate Depth Map On 
Image is not a valid tool, 
try another one.
I'm sorry, I cannot predict 
the depth image of 
image/3ec08471.png.

: I have used the tool 
to predict the depth 
image of the 
image/a5e4518d.png. 
The depth image is saved 
as

: Received. 

: what is in this image

:
image/
3ec084
71.png

:
image/
a5e451
8d.png

: Received. What do 
you want to know / 
operate it?

: can you predict the 
depth image?

image/a4b5_depth_a5
e4518d_a5e4518d.png.

Output of LLM:
Action: Replace 
Something From The 
Photo 
Action Input: 
image/6450a01f.png,cat

:
image/
477afd
fb.png

: contains a panda bear 
sitting on a bamboo stick.

: detect the edges

: 
image/508d_e
dge_477afdfb_
477afdfb.png.

: Can you imagine 
the original image of 

this edge map?

: 
Image/95ad_can
ny2image_508d
_477afdfb.png

:
image/
fceeb3
35.png

: Received. 

: what is in this image

: contains a panda bear 
sitting on a bamboo stick.

: detect the edges

: 
image/9b88_e
dge_fceeb335_
fceeb335.png.

: Can you imagine 
the original image of 

this edge map?

: 
image/bd20_can
ny2image_9b88
_fceeb335.png

Name Usage

Inputs/Outputs Example

Failed to trigger correct 
foundation model

by adding name of
foundation model

Triggered wrong 
foundation model

by adding usage of
foundation model

without example of
foundation model

by adding example of
foundation model

Failed to trigger correct 
foundation model

by adding inputs/outputs 
of foundation model

Figure 6. Case study of prompt managing of foundation models. We qualitatively analyze the four proposals: Name, Usage, Inputs/Outputs,
and Example. The top-left shows that Visual ChatGPT will guess the tool name and then fails to use the correct tool without the tool name.
The top-right shows that when the usage of the tool name is missing or unclear, it will call other tools or encounters an error. The bottom-
left shows that the lack of inputs/outputs format requirements will lead to wrong parameters. The bottom-right shows that the example
sometimes is optional because the ChatGPT is able to summarize the historical information and human intents to use the correct tool.



: generate a picture of 
fancy car 

: 
Here is a 
picture of a 
fancy car:
image/
f98df310.png

: it’s a poster, isn’t it?

:generate a picture of 
fancy car 

: it’s a poster, isn’t it? 

: 
Here is a 
picture of a 
fancy car:
image/
f98df310.png

: Yes, this is a poster.: No, it’s not a poster. 
It’s a picture of a fancy car.

:……

image/6aee4bb0.png

: Please specify which 
cup you would like to 
replace in the image

image/6aee4bb0.png and 
try again.

: 

: Received

: replace the cup in 
image/6aee4bb0.png 

with a fruit

: the blue one on the 
left 

: The blue cup on the 
left in the image/
6aee4bb0.png

has been replaced with a 
fruit. The new image is

image/ac30_replace-
something_6aee4bb0_6a
ee4bb0.png.

: show me the scribble 

: Since ... for Human. 
Thought: Do I need to use a 
tool? Yes Action: Sketch On 
Image Action Input: image/
f98df310.png

: show me the scribble 

: Here is 
the scribble 
of it: 
image/5243
_scribble_
f98df310 _
f98df310.pn
g

……

: I have 
generated …… The 
new image is saved 
as 
image/a4d4_depth
2image_8855_a7d9
2766.png.

: generate an image based 
on image/8855_depth_
a7d92766_a7d92766.png.

: based on the previous 
dialogue, can you conclude 
the rule that how are these 
images named?

: The image name is 
formed as “image/xxx.png”, 
and the xxx part is a 
combination of the tool
name and the image_path of 
the previous tool observation.
For example, ……

……

: I have 
generated an image 
based on 
image/8s1fon0i.png. 
The new image is 
saved as 
image/8d43193d.png

: generate an image based 
on image/8s1fon0i.png

: based on the previous 
dialogue, can you conclude 
the rule that how are these 
images named?

: Yes, Visual ChatGPT is 
very strict to the file name 
correctness and will never 
fake a file name if not exists. 
Visual ChatGPT will remember 
to provide the image file name 
loyally if it’s provided in the 
last tool observation.

Generate Unique Filename Force FVM Thinking

Generate Chained Filename Ask for More Details

Failed to distinguish 
filenames

by generating 
unique filename

Failed to invoke 
foundation models

by forcing FVM 
thinking

Failed to connect 
related image files

by generating  
chained filename

by asking for more details to handle 
ambiguous questions from users

: image/
bird.png

: Received

: make image/bird.png 
black and white

: I have 
generated a 
black-and-
white image of 
a bird for you. 
The file name is 
image/pix2pix_
bird.png

:  image/
e119bb20.png

: Received

: make image/
9e4e4077.png black and 
white

: The image 
has been 
changed to 
black and 
white. The new 
image is
image/c488_pix2pix_9e4
e4077_9e4e4077.png.

: image/
bird.png

: image/
9e4e4077.png

: Received : Received

:……

Figure 7. Case study of prompt managing of the user query and model output. We qualitatively analyze the four proposals: unique file
names, force VFM thinking, chained file names, and ask for more details. The top-left shows that unique file names avoid overwriting. The
top-right shows force VFM thinking encourages tool invoking and strict thinking format. The bottom-left shows chained file naming helps
understand files and can be successfully observed and concluded by Visual ChatGPT. The bottom-right shows Visual ChatGPT is able to
detect ambiguous references and ask for more details.



4.3. Case Study of Prompt Manager

Case Study of prompt managing of system principles
is analyzed in Fig. 5. To validate the effectiveness of our
system principle prompts, we remove different parts from it
to compare model performance. Each removal will result in
different capacity degradation.

Case Study of prompt managing of foundation mod-
els is analyzed in Fig. 6. The name of the VFM is the most
important and needs to be clearly defined. When the name is
missing or ambiguous, Visual ChatGPT will guess it many
times until it finds an existing VFM, or encounters an error,
as the top-left figure shows. The VFM usage should clearly
describe the specific scenario where a model should be used
to avoid the wrong responses. The top-right figure shows
that the style transfer is mishandled to the replacement. The
input and output format should be prompted accurately to
avoid parameter errors, as shown in the bottom-left. The
example prompt can help the model deal with complex us-
ages but is optional. As shown in the bottom-right figure,
although we delete the example prompt, ChatGPT can also
summarize the dialogue history and human intents to use
the correct VFM. The complete visual foundation model
prompts is shown in Appendix A.

Case Study of prompt managing of user query is an-
alyzed in Fig7 upper part. The top-left figure shows that
without image file unique naming, newly uploaded image
file might be renamed to avoid overwritten and result in
wrong reference. As shown in the top-right figure, by mov-
ing the thought guidance fromM(P) toM(Q) and making
it spoken in Visual ChatGPT’s voice as a force thinking, in-
voking more VFM is emphasized rather than imagination
based on textual context as compared inQ2. By forcing Vi-
sual ChatGPT to say “Thought: Do I need to use a tool?”,
M(Q) makes it easier to pass regex match correctly. In
contrast, without force thinking, A3 may wrongly generate
the end of thoughts token and directly consider all of its
ChatGPT outputs as the final response.

Case Study of prompt managing of model outputs is
analyzed in Fig7 bottom part. The bottom-left picture com-
pares the performance of removing and keeping the chained
naming rule. With the chained naming rule, Visual Chat-
GPT can recognize the file type, trigger the correct VFM,
and conclude the file dependency relationship naming rule.
It shows that the chained naming rule does help Visual Chat-
GPT to understand. The bottom-right picture gives an ex-
ample of asking for more details when the item inference is
ambiguous, which also indicates the safety of our system.

5. Limitations

Although Visual ChatGTP is a promising approach for
multi-modal dialogue, it has some limitations, including:

• Dependence on ChatGPT and VFMs Visual Chat-
GPT relies heavily on ChatGPT to assign tasks and on
VFMs to execute them. The performance of Visual
ChatGPT is thus heavily influenced by the accuracy
and effectiveness of these models.

• Heavy Prompt Engineering Visual ChatGPT requires
a significant amount of prompt engineering to con-
vert VFMs into language and make these model de-
scriptions distinguishable. This process can be time-
consuming and requires expertise in both computer vi-
sion and natural language processing.

• Limited Real-time Capabilities Visual ChatGPT is
designed to be general. It tries to decompose a com-
plex task into several subtasks automatically. Thus,
when handling a specific task, Visual ChatGPT may
invoke multiple VFMs, resulting in limited real-time
capabilities compared to expert models specifically
trained for a particular task.

• Token Length Limitation The maximum token length
in ChatGPT may limit the number of foundation mod-
els that can be used. If there are thousands or millions
of foundation models, a pre-filter module may be nec-
essary to limit the VFMs fed to ChatGPT.

• Security and Privacy The ability to easily plug and
unplug foundation models may raise security and pri-
vacy concerns, particularly for remote models ac-
cessed via APIs. Careful consideration and auto-
matic check must be given to ensure that sensitive data
should not be exposed or compromised.

6. Conclusion

In this work, we propose Visual ChatGPT, an open sys-
tem incorporating different VFMs and enabling users to in-
teract with ChatGPT beyond language format. To build
such a system, we meticulously design a series of prompts
to help inject the visual information into ChatGPT, which
thus can solve the complex visual questions step-by-step.
Massive experiments and selected cases have demonstrated
the great potential and competence of Visual ChatGPT for
different tasks. Apart from the aforementioned limitations,
another concern is that some generation results are unsat-
isfied due to the failure of VFMs and the instability of the
prompt. Thus, one self-correction module is necessary for
checking the consistency between execution results and hu-
man intentions and accordingly making the corresponding
editing. Such self-correction behavior can lead to more
complex thinking of the model, significantly increasing the
inference time. We will solve such an issue in the future.
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[34] René Ranftl, Katrin Lasinger, David Hafner, Konrad
Schindler, and Vladlen Koltun. Towards robust monocular
depth estimation: Mixing datasets for zero-shot cross-dataset
transfer. IEEE transactions on pattern analysis and machine
intelligence, 44(3):1623–1637, 2020.

[35] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10684–10695, 2022.

[36] Teven Le Scao, Angela Fan, Christopher Akiki, Ellie
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A. Tool Details

• Remove Something From The Photo:

Model: “runwayml/stable-diffusion-inpainting” from
Huggingface library, StableDiffusionInpaint-
Pipeline model; “CIDAS/clipseg-rd64-refined”
from Huggingface library, CLIPSegForImage-
Segmentation model.

InOut: image path, textual what to remove → im-
age path

Prompt: Remove something from the photo: useful for
when you want to remove and object or some-
thing from the photo from its description or loca-
tion. The input to this tool should be a comma
seperated string of two, representing the im-
age path and the object need to be removed.

• Replace Something From The Photo:

Model: ”runwayml/stable-diffusion-inpainting” from
Huggingface library, StableDiffusionInpaint-
Pipeline model; “CIDAS/clipseg-rd64-refined”
from Huggingface library, CLIPSegForImage-
Segmentation model.

InOut: image path, textual what to replace, textual what
to add→ image path

Prompt: Replace something from the photo: useful for
when you want to replace an object from the ob-
ject description or location with another object
from its description. The input to this tool should
be a comma seperated string of three, represent-
ing the image path, the object to be replaced, the
object to be replaced with.

• Instruct Image Using Text:

Model: ”timbrooks/instruct-pix2pix” from Hugging-
Face, StableDiffusionInstructPix2PixPipeline
model.

InOut: image path, textual how to modify → im-
age path

Prompt: Instruct image using text: useful for when you
want to the style of the image to be like the text.
like: make it look like a painting. or make it
like a robot. The input to this tool should be a
comma seperated string of two, representing the
image path and the text.

• Answer Question About The Image:

Model: ”Salesforce/blip-vqa-base” from HuggingFace,
BlipForQuestionAnswering model.

InOut: image path, question→ answer

Prompt: useful when you need an answer for a question
based on an image like: what is the background
color of the last image, how many cats in this
figure, what is in this figure.

• Get Photo Description:

Model: ”Salesforce/blip-image-captioning-base” from
HuggingFace library, BlipForConditionalGener-
ation model.

InOut: image path→ natural language description

Prompt: Get photo description: useful for when you want
to know what is inside the photo. The input to
this tool should be a string, representing the im-
age path.

• Generate Image From User Input Text:

Model: ”runwayml/stable-diffusion-v1-5” from Hug-
gingFace library, StableDiffusionPipeline model.

InOut: textual description→ image path

Prompt: Generate image from user input text: useful for
when you want to generate an image from a user
input text and it saved it to a file. The input to
this tool should be a string, representing the text
used to generate image.

• Edge Detection On Image :

Model: Canny Edge Detector from OpenCV

InOut: image path→ edge image path

Prompt: Edge Detection On Image : useful for when you
want to detect the edge of the image. like: detect
the edges of this image, or canny detection on
image, or peform edge detection on this image, or
detect the canny image of this image. The input
to this tool should be a string, representing the
image path.

• Image Generation Condition On Canny Image:

Model: ControlNet for Canny Edge.

InOut: edge image path, textual description → im-
age path

Prompt: useful for when you want to generate a new real
image from both the user desciption and a canny
image. like: generate a real image of a object
or something from this canny image, or generate
a new real image of a object or something from
this edge image. The input to this tool should
be a comma seperated string of two, representing
the image path and the user description.



• Line Detection On Image :

Model: M-LSD Detector for Straight Line
InOut: image path→ line image path

Prompt: Line Detection On Image : useful for when you
want to detect the straight line of the image. like:
detect the straight lines of this image, or straight
line detection on image, or peform straight line
detection on this image, or detect the straight line
image of this image. The input to this tool should
be a string, representing the image path

• Generate Image Condition On Line Image:

Model: ControlNet for M-LSD Lines.
InOut: line image path, textual description → im-

age path
Prompt: useful for when you want to generate a new

real image from both the user desciption and a
straight line image. like: generate a real image
of a object or something from this straight line
image, or generate a new real image of a object
or something from this straight lines. The input
to this tool should be a comma seperated string
of two, representing the image path and the user
description.

• Hed Detection On Image :

Model: HED Boundary Detector
InOut: image path→ hed image path

Prompt: Hed Detection On Image: useful for when you
want to detect the soft hed boundary of the image.
like: detect the soft hed boundary of this image,
or hed boundary detection on image, or peform
hed boundary detection on this image, or detect
soft hed boundary image of this image. The input
to this tool should be a string, representing the
image path

• Generate Image Condition On Soft Hed Boundary Image :

Model: ControlNet for HED.
InOut: hed image path, textual description → im-

age path
Prompt: Generate Image Condition On Soft Hed Bound-

ary Image: useful for when you want to gener-
ate a new real image from both the user descip-
tion and a soft hed boundary image. like: gen-
erate a real image of a object or something from
this soft hed boundary image, or generate a new
real image of a object or something from this
hed boundary. The input to this tool should be a
comma seperated string of two, representing the
image path and the user description

• Segmentation On Image :

Model: Uniformer Segmentation

InOut: image path→ segment image path

Prompt: useful for when you want to detect segmentations
of the image. like: segment this image, or gener-
ate segmentations on this image, or peform seg-
mentation on this image. The input to this tool
should be a string, representing the image path

• Generate Image Condition On Segmentations :

Model: ControlNet for Segmentation.

InOut: segment image path, textual description → im-
age path

Prompt: useful for when you want to generate a new real
image from both the user desciption and segmen-
tations. like: generate a real image of a object or
something from this segmentation image, or gen-
erate a new real image of a object or something
from these segmentations. The input to this tool
should be a comma seperated string of two, rep-
resenting the image path and the user description

• Predict Depth On Image :

Model: MiDaS Depth Estimation

InOut: image path→ depth image path

Prompt: Predict Depth Map On Image : useful for when
you want to detect depth of the image. like: gen-
erate the depth from this image, or detect the
depth map on this image, or predict the depth
for this image, the input to this tool should be
a string, representing the image path.

• Generate Image Condition On Depth:

Model: ControlNet for Depth.

InOut: depth image path, textual description → im-
age path

Prompt: Generate Image Condition On Depth Map : use-
ful for when you want to generate a new real im-
age from both the user desciption and depth im-
age. like: generate a real image of a object or
something from this depth image, or generate a
new real image of a object or something from
the depth map, The input to this tool should be a
comma seperated string of two, representing the
image path and the user description.

• Predict Normal Map On Image :

Model: MiDaS Depth Estimation for Normal Map

InOut: image path→ norm image path



Prompt: Predict Normal Map On Image : useful for when
you want to detect norm map of the image. like:
generate normal map from this image, or predict
normal map of this image The input to this tool
should be a string, representing the image path

• Generate Image Condition On Normal Map :

Model: ControlNet for Normal Map.

InOut: norm image path, textual description → im-
age path

Prompt: Generate Image Condition On Normal Map :
useful for when you want to generate a new real
image from both the user desciption and normal
map. like: generate a real image of a object or
something from this normal map, or generate a
new real image of a object or something from the
normal map. The input to this tool should be a
comma seperated string of two, representing the
image path and the user description

• Sketch Detection On Image :

Model: HED Boundary Detector

InOut: image path→ sketch image path

Prompt: Sketch Detection On Image: useful for when you
want to generate a scribble of the image. like:
generate a scribble of this image, or generate a
sketch from this image, detect the sketch from
this image. The input to this tool should be a
string, representing the image path

• Generate Image Condition On Sketch Image :

Model: ControlNet for Scribble.

InOut: sketch image path, textual description → im-
age path

Prompt: useful for when you want to generate a new real
image from both the user desciption and a scrib-
ble image. like: generate a real image of a object
or something from this scribble image, or gen-
erate a new real image of a object or something
from this sketch. The input to this tool should
be a comma seperated string of two, representing
the image path and the user description

• Pose Detection On Image :

Model: Openpose Detector

InOut: image path→ pos image path

Prompt: Pose Detection On Image: useful for when you
want to detect the human pose of the image. like:
generate human poses of this image, or gener-
ate a pose image from this image. The input to

this tool should be a string, representing the im-
age path

• Generate Image Condition On Pose Image :

Model: ControlNet for Human Pose.

InOut: pos image path, textual description → im-
age path

Prompt: Generate Image Condition On Pose Image: use-
ful for when you want to generate a new real im-
age from both the user desciption and a human
pose image. like: generate a real image of a hu-
man from this human pose image, or generate a
new real image of a human from this pose. The
input to this tool should be a comma seperated
string of two, representing the image path and
the user description


